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Abstract In most mathematics textbooks, each set of practice problems is comprised

almost entirely of problems corresponding to the immediately previous lesson. By contrast,

in a small number of textbooks, the practice problems are systematically shuffled so that

each practice set includes a variety of problems drawn from many previous lessons. The

standard and shuffled formats differ in two critical ways, and each was the focus of an

experiment reported here. In Experiment 1, college students learned to solve one kind of

problem, and subsequent practice problems were either massed in a single session (as in the

standard format) or spaced across multiple sessions (as in the shuffled format). When tested

1 week later, performance was much greater after spaced practice. In Experiment 2,

students first learned to solve multiple types of problems, and practice problems were

either blocked by type (as in the standard format) or randomly mixed (as in the shuffled

format). When tested 1 week later, performance was vastly superior after mixed practice.

Thus, the results of both experiments favored the shuffled format over the standard format.

Keywords Mathematics � Practice � Distribute � Mass � Block � Mix �
Interleave � Spacing

Introduction

The effort to improve mathematics learning has focused primarily on the manner in which

material is taught, with far less attention given to the role of practice problems. Yet, for

many students, the majority of their mathematics learning effort is devoted to practice

problems (rather than, say, reading). While many aspects of practice are worthy of

investigation, the two experiments presented here focused primarily on the effects of

varying either the temporal distribution of practice problems or the order in which
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problems are solved. Neither manipulation required an increase in the total number of

practice problems, yet both experiments revealed large boosts in subsequent test

performance. That is, merely altering the timing of practice led to large gains in test

performance.

The arrangement of practice problems in most mathematics textbooks is one that most

readers will recognize. Each set of practice problems, or practice set, consists almost

entirely of problems corresponding to the immediately preceding lesson (e.g., Glencoe,

2001). For example, a lesson on the addition or subtraction of fractions (e.g., 5/6–4/5) is

followed immediately by perhaps a few dozen problems, all of which require the addition

or subtraction of fractions. In brief, each set of practice problems is devoted to the most

recent lesson. Moreover, problems of the same type are usually in blocks (e.g., 12 fraction

addition problems, followed by 12 fraction subtraction problems). This format also is the

modal format of computer-aided instructional packages, and, therefore, the data reported

herein apply to this instructional medium as well.

The standard practice format has two features that are examined here. First, most or all

of the problems relating to a given lesson are concentrated or massed into the immediately

following practice set instead of being distributed or spaced across multiple practice sets.

For example, in the standard format, virtually all of the quadratic formula problems within

the textbook appear in the practice set that appears immediately after the lesson on the

quadratic formula. The second feature of the standard format is that the problems within

each practice set are usually blocked by topic and not mixed across topics. For example,

after a lesson explaining how to find the least common multiple and the greatest common

factor of two integers, a practice set includes a block of least common multiple problems

followed by a block of greatest common factor problems. Notably, it is possible for a

textbook to use massed practice but not blocked practice, but, in our experience, these two

features usually co-occur.

By contrast, a very small number of mathematics textbooks use what we call a shuffled

format (e.g., Saxon, 1997). A textbook with a shuffled format may have lessons identical to

those in the standard format, and moreover, the two formats need not differ in either the

number of practice sets within the text or the number of practice problems per practice set.

But, with the shuffled format, the practice problems are systematically arranged so that

practice problems are both distributed and mixed. For example, after a lesson on the

quadratic formula, the immediately following practice set would include no more than a

few quadratic formula problems, with other quadratic formula problems appearing in

subsequent practice sets with decreasing frequency. Thus, the practice problems of a given

type are systematically spaced throughout the textbook. This spacing intrinsically ensures

that the problems within each practice set include a mixture of different types, as there are

no more than one or two practice problems of each kind within each practice set. In order

to achieve such variety in the early portion of the textbook, the first several practice sets

can include problems relating to topics covered in previous years.

In summary, virtually all mathematics textbooks use one of two formats that differ with

regard to two variables. First, the problems of a given type are either massed in a single

practice set (as in the standard format) or spaced across multiple practice sets (as in the

shuffled format). Second, problems of different types are either blocked by type (as in the

standard format) or randomly mixed (as in the shuffled format). The massed vs. spaced

variable was examined in Experiment 1, and the blocked vs. mixed variable was examined

in Experiment 2. A third variable—light versus heavy massed practice—was also

examined in Experiment 1, for reasons described below. The remainder of the Introduction

is devoted to the relevant literature.
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Massed versus spaced practice

In an experiment comparing the benefits of massed and spaced practice, a given amount of

practice is either massed into a single session or spaced across multiple sessions. For

example, four practice problems (relating to the same skill or concept) might be assigned in

a single session or divided evenly across two sessions separated by 1 week. The retention
interval equals the period of time between the last practice problem and the test. For

example, if a skill is practiced on Monday and Tuesday and tested on Friday, the retention

interval equals 3 days.

Test performance is generally superior after practice that is spaced rather than massed—

a finding known as the spacing effect (e.g., Bahrick, Bahrick, Bahrick, & Bahrick, 1993;

Bjork, 1979, 1988, 1994; Bloom & Shuell, 1981; Carpenter & DeLosh, 2005; Reynolds &

Glaser, 1964; Smith & Rothkopf, 1984). Exactly how spacing of practice produces this

benefit is the focus of much unresolved debate (for a review, see Dempster, 1989), but, for

the present purposes, it is sufficient to simply note that spaced practice boosts test per-

formance. For this reason, many previous authors have advocated that learners space their

study (Bahrick et al., 1993; Bjork, 1979, 1988, 1994; Bloom & Shuell, 1981; Cepeda,

Pashler, Vul, Wixted, & Rohrer, 2006; Dempster, 1989; Pashler, Rohrer, Cepeda, &

Carpenter, 2007; Reynolds & Glaser, 1964; Schmidt & Bjork, 1992; Smith & Rothkopf,

1984).

While only a few of the hundreds of spacing experiments have used mathematics tasks,

these few findings have shown benefits of spacing mathematics practice. For instance,

Smith and Rothkopf (1984) observed a spacing effect if several statistics lectures were

spaced across 4 days rather than massed into one session. More recently, Rohrer and

Taylor (2006) found a benefit of spacing mathematics practice for students who were tested

4 weeks after their last practice problem. Finally, Rea and Modigliani (1985) found a

spacing effect with young children who were asked to memorize five multiplication facts

(e.g., 8 · 5 = 40), although this kind of task is better described as verbal memory rather

than mathematical learning (which is not to say that such facts are not sometimes useful).

Incidentally, several mathematics learning experiments that purport to show a spacing

effect were, in fact, confounded in favor of the spacing effect. In Grote (1995), for in-

stance, students either massed their practice on Day 1 or spaced their practice across Days

1 through 22, but every student was tested on Day 36. Thus, the spaced practice condition

benefited from a far shorter retention interval. Nevertheless, the results of the few non-

confounded studies support the view that the long-term retention of mathematical

knowledge is enhanced by distributing the corresponding practice problems across multiple

practice sessions. This effect is revisited in Experiment 1.

Light versus heavy massed practice

One explanation for the preponderance of massed practice within mathematics textbooks is

the oft-cited belief that material is retained longer if study or practice continues imme-

diately after the material is understood. This kind of massed practice is formally known as

an overlearning strategy. For example, after a student has correctly solved one mathe-

matics problem (or perhaps two problems of the same type in order to rule out the

possibility that the first correct answer was due to chance), additional problems of the same
type, if attempted immediately, constitute an overlearning strategy. It must be clarified,

incidentally, that the term overlearning describes a strategy and not the degree of learning.
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In fact, one can achieve a very high degree of learning without using an overlearning

strategy. For example, most everyone has mastered the names of the calendar months, but

few did so by the use of an overlearning strategy (i.e., immediate post-criterion practice).

Thus, we are not evaluating the utility of knowing material very well but rather the utility

of learning by the strategy of post-criterion practice.

Overlearning experiments include a condition that ensures overlearning and a condition

in which overlearning is avoided or at least minimized. The great majority of these

experiments have found that the overlearning condition produces greater subsequent test

performance (e.g., Gilbert, 1957; Krueger, 1929; Postman, 1962), and such a benefit was

confirmed by a meta-analysis reported by Driskell et al. (1992). In brief, although a few

studies have found little or no benefit of overlearning (e.g., Reynolds & Glaser, 1964;

Rohrer, Taylor, Pashler, Wixted, & Cepeda, 2005), most results find overlearning to boost

subsequent test performance. These empirical findings perhaps explain the widespread

support for overlearning as a learning strategy (e.g., Fitts, 1965; Foriska, 1993; Hall, 1989;

Jahnke & Nowaczyk, 1998; Radvasky, 2006).

Yet there is reason to be cautious about the utility of overlearning in the mathematics

classroom. Only one previous overlearning experiment has used a mathematics task, and it

found no effect of overlearning on subsequent test performance. In an experiment reported

by Rohrer and Taylor (2006), students learned a single procedure and then immediately

worked either three or nine practice problems. The threefold increase in practice had no

effect on test scores at either the 1-week or 4-week tests.

Thus, this single experiment raises the possibility that mathematics overlearning is a

waste of time, and the implications of this finding are troubling because many mathe-

matics assignments demand a large degree of overlearning. For example, in the standard

(massed-blocked) format described at the outset of this Introduction, practice sets often

include as many as a dozen or more problems of the same kind. Thus, if overlearning is

ineffective, most mathematics students are devoting a sizeable proportion of their

practice to a learning strategy with little or no benefit. The benefits of overlearning are

revisited in Experiment 1.

Blocked versus mixed practice

Practice problems within mathematics textbooks are usually blocked by topic and not

mixed together, as described at the outset of this Introduction, but there appears to be little

direct evidence supporting either strategy for mathematics tasks. For motor tasks, the data

suggest that subsequent test performance is greater after mixed practice (see Bjork, 1994,

for a review). In Carson and Wiegand (1979), for instance, young children learned to throw

bean bags of different weights at a target, and their subsequent test performance was

greater when the practice throws for each particular weight were intermixed and not

blocked by weight.

For mathematics learning, however, we are unaware of any experiments comparing

mixed and blocked practice. Some previous studies have compared practice schedules that

differ with regard to the extent of mixture, but these experimental comparisons have been

confounded. For example, in an experiment reported by Mayfield and Chase (2002), one

group of subjects relied on mixed, spaced practice while another group underwent blocked,

massed practice. Thus, it was impossible to assess the specific effect of mixture. In

Experiment 2 of the present paper, students are randomly assigned to either a mixed or

blocked practice schedule, and the practice problems for both groups are spaced across two
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sessions. This way, we were able to assess whether mixed practice provides benefits above
and beyond the benefit of spaced practice.

There is good reason to expect that a mixture of problem types will benefit subsequent

test performance. If a practice set includes a randomly arranged variety of problem types,

students learn to pair each kind of problem with the appropriate procedure. In other words,

a mixed practice schedule requires that students learn not only how to perform each

procedure but also which procedure is appropriate for each kind of problem (e.g., Kester,

Kirschner, & Van Merriënboer, 2004). For example, when a lesson on the repeated-

measures t-test is followed immediately by a practice set comprised solely of repeated-

measures t-test problems, the choice of procedure is obvious to students. Thus, they can

complete this block of practice problems without learning why each problem requires this

particular procedure. Consequently, when these students receive a repeated-measures t-test

problem on a later exam that includes a variety of problem types, each requiring that they

‘‘assess statistical significance,’’ they are faced with a task they have not practiced:

knowing which statistical test is appropriate for each type of problem. In fact, knowing

which procedure is appropriate is arguably more important than knowing how to perform

the procedure.

Learning to pair problem types and procedures is especially challenging in mathematics

because different problem types are often superficially similar. For example, the solution of

a single equation with a single variable is a rather narrow subset of problems, but even this

subset of problem types subsumes different procedures. For example, the equation,

x3�3x2�2x = 0, is solved by factoring the left-hand expression, but the equation,

x2�x�1 = 0, cannot be solved by factoring and instead requires the quadratic formula.

Likewise, integral problems share a similar appearance, but students must learn which

integration technique is appropriate for each of the subtly different kinds. Such superficial

similarity is ubiquitous in mathematics, and this is why students need discrimination

training.

The link between superficial similarity and the importance of this discrimination learning

has been demonstrated by VanderStoep and Seifert (1993). In their first experiment, for

instance, students learned to solve two kinds of mathematics problems that were either

similar or different in appearance. Some students saw a tutorial emphasizing how to solve

each kind of problem, and others saw a tutorial emphasizing which of two procedures was

appropriate for each kind of problem. The learning-which tutorial proved more effective

than the learning-how tutorial when the two kinds of problems were similar, but the tutorials

were equally effective when the kinds of problems did not resemble each other. Thus,

discrimination training proved useful when problems were similar in appearance.

In summary, while the importance of discrimination training provides one reason to

suspect that the mixture or interleaving of problem types will produce better subsequent

test performance, it appears that no prior experiments have directly compared mixed and

blocked practice. This was the aim of Experiment 2. If mixed practice is, in fact, superior

to blocked practice for mathematics learning, it would suggest that the widespread reliance

on blocked practice needs reevaluation.

Experiment 1

The first experiment assessed the effects of temporal distribution (spaced vs. massed

practice) and overlearning (massed practice vs. light massed practice) of mathematics

practice. College students were taught how to calculate the number of permutations of a
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letter sequence with at least one repeated letter (e.g., aabccc), and they then practiced this

procedure according to one of three schedules. Spacers worked two practice problems in

each of two sessions separated by 1 week; Massers worked the same four practice problems

in a single session; and Light Massers worked just two practice problems in one session.

All students were tested 1 week after their final practice problem. The procedure is

summarized in Fig. 2a.

Two critical comparisons are made. First, we assessed the effect of spacing practice by

comparing the test performance of Spacers and Massers. Second, we assessed the effect of

overlearning by comparing the test performance of Massers and Light Massers. As detailed

in the Introduction, the standard format relies predominantly on practice sets that are

massed, and the sheer number of problems within these practice sets ensures overlearning.

By contrast, the shuffled format incorporates spaced practice.

Method

Participants

All three sessions were completed by 66 undergraduates (51 women) at the University of

South Florida. An additional 14 students completed the first session but failed to attend

either the second or third session.

Task

Students calculated the number of unique orderings (i.e., permutations) of a letter sequence

with at least one repeated letter. For example, the sequence abbccc has 60 permutations,

including abccbc, accbcb, bbaccc, and so forth. Every letter sequence was four to eight

letters in length, and the number of unique letters in each sequence equaled two (a and b)

or three (a, b, and c). No sequence had more than 90 permutations. The number of

permutations for any sequence is given by a formula that is illustrated in the Appendix, but

students were not shown this formula because we believed that it would prove too complex

for some of our students Instead, we taught students with examples that were presented

exactly as shown in Fig. 1.

Base rate survey

Although we were confident that this particular kind of permutation problem was unknown

to our participant pool, we verified this by testing a sample of 50 students (with 43 women)

from the same participant pool, none of whom participated in either Experiments 1 or 2.

Each student was given 3 min to find the number of permutations for three of the practice

problems used in Experiment 1.

None of the surveyed students correctly answered any of the problems, and none of their

written solutions exhibited any evidence of the appropriate procedure. Some attempted to

simply list every permutation, but none succeeded, probably because of the time constraint.

Hence, this survey showed that this task is virtually, if not entirely, unknown to our

participant pool. Furthermore, to the extent that any relevant pre-experimental knowledge

did exist, it would not confound the experiment because of random assignment and the law

of large numbers.
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Procedure

Each student attended three sessions spaced 1 week apart. At the beginning of the first

session, each student was assigned to the group of Spacers, Massers, or Light Massers. At

no point were students told what to expect in subsequent sessions.

All students simultaneously observed a 3-min tutorial at the beginning of the first

session. The tutorial included a single projected visual slide with some explanatory

information and a sample problem, accompanied by oral explanation. The slide also

included the solution to the sample problem, which was presented exactly as shown in

Fig. 1. Immediately after the tutorial, every student completed the first practice set. The

Light Massers worked only the first practice set. The Massers worked both practice sets in

session one. The Spacers worked the first practice set in session one and the second

practice set in session two.

Each practice set included two examples and two practice problems, all of which were

presented in a test booklet. Students were given 45 s to solve each example, and each

example was followed immediately by a 15-s visual projection of its solution (which, like

the tutorial sample problem, was presented as shown in Fig. 1). The two practice problems

were also allotted 45 s each but were not followed by feedback. The selection and order of

the example and practice problems did not vary across students.

The test was given to the Massers and Light Massers in session two (1 week after their

final practice problem), and the Spacers were tested in session three (1 week after their

final practice problem), as illustrated in Fig. 2a. The test consisted of a single piece of

paper with five novel problems, and all students saw the same five problems in the same

order. Students were asked to solve all five problems in 225 s (which averages to 45 s per

problem). Students were required to sit for the entire time period, and feedback was not

provided.

Critically, although the Massers and Light Massers were tested in the second session,

they were required to attend the third session. If they had been allowed to skip the third

Problem
In how many ways can the letters abbccc be arranged?

Solution

 6 letters 

232

23456

skip a, because it
does not repeat b appears 2 times c appears 3 times

=
232

23456
= 60

Fig. 1 Permutation task. This example illustrates the format of the solutions presented to students during
the tutorial and the feedback after each example
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session, the test scores of the Massers and Light Massers would have included subjects

who might have not attended the third session if it had been required. This would have

confounded the experiment because subjects who fail to show for a follow-up session

perform worse, on average, than those who show. Thus, allowing Massers and Light

Massers to skip the third session would have confounded the experiment in favor of the

Spacers. Indeed, the present experiment included three Massers who failed to attend the

third session, and their average test score was, in fact, lower than the average score of the

Massers who attended all three sessions. Thus, by requiring every student to attend the

third session, the observed spacing effect was not exaggerated.

Resultsand discussion

Inclusion criterion

Because one aim of this study was to assess the benefits of overlearning by comparing the

Massers and Light Massers, it was important that Light Massers provide at least one correct

response during practice. This is because overlearning requires that students continue

practice beyond criterion, and, consequently, the benefits of overlearning cannot be as-

sessed unless the control group reaches criterion. Therefore, we restricted our analyses to

those students who correctly answered at least one of the first two practice problems

(which were the only two practice problems attempted by all students). This eliminated six

of the 66 students. The exclusion of these six students slightly increased the mean test

scores of each group, but it had no effect on the findings.

A  Practice Procedure 

week 1   week 2    week 3

Spacers  2 problems   2 problems    test

Massers 4 problems     test    filler task

Light Massers  2 problems test     filler task

B  Test Performance

Spacers Massers Light Massers

A
cc

ur
ac

y

0%

100%

74%  

  49% 46%

Fig. 2 Experiment 1. a Practice
procedure. Each pair of practice
problems was preceded by two
examples. Students saw a single
tutorial immediately before the
first example. Practice session
performance did not differ
reliably between groups. b Test
performance. Error bars reflect
±1 SE
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Practice performance

Mean accuracy for the first two problems equaled 95% (SE = 2%). Naturally, there were no

reliable differences between the three groups on these first two problems (p > 0.05) because

these two practice problems were completed before the procedures for the three groups

diverged.

For the second set of two practice problems, the timing was manipulated, as it was

begun immediately after the first practice set (Massers) or 1 week later (Spacers). Yet

despite the delay imposed upon the Spacers, their second practice set mean accuracy of

83% (SE = 6%) was about equal to the Massers’ average of 82% (SE = 7%), t < 1. Thus, a

1-week delay did not impair performance on the second practice set, and this was probably

due to the fact that each practice set began with two solved examples. Notably, though, this

was not a confound because both Massers and Spacers saw the same two examples just

before the second practice set. In summary, practice strategy did not significantly affect

practice performance.

Test performance

Practice strategy affected test performance. As shown in Figure 2a, the Spacers’ mean test

accuracy of 74% (SE = 8%) exceeded both the Massers’ average of 49% (SE = 10%) and

the Light Massers’ average of 46% (SE = 7%). An analysis of variance revealed a reliable

difference between the groups, F (2, 57) = 3.59, p < 0.05, gp
2 = 0.11. Subsequent Holm–

Sidak comparisons revealed that the Spacers outscored both the Massers (p < 0.05) and the

Light Massers (p < 0.05), but the Massers and the Light Massers did not differ reliably

(p = 0.8).

Summary

Two key findings were observed. First, despite a twofold different in the amount of massed

practice assigned to Massers and Light Massers, there was not detectable difference in their

test scores. Thus, because the Light Massers correctly answered at least one practice

problem (as all analyses excluded subjects who did not correctly answer any practice

problems), this finding constitutes a null effect of overlearning (i.e., immediate post-

criterion study). Admittedly, overlearning might have significantly boosted test scores if

the number of massed practice problems had varied by a factor of, say, 10 and not just two.

However, any such effect would need to be extremely large before it would justify the

tenfold increase in study time. This is because learners have a finite amount of study time,

and they should invest this time in strategies that provide a good return on their investment.

Thus, while an extremely large amount of overlearning might boost test scores, it would

probably not be efficient. Finally, and as noted in the Introduction, a null effect of

mathematics overlearning was observed previously (Rohrer & Taylor, 2006). However, the

present finding is the first in which the null effect cannot be attributed to an artificial

constraint on test performance. That is, the inability of the Massers to outscore the Light

Massers cannot be attributed to an inherent ceiling effect because the Massers were vastly

outscored by the Spacers. This superiority of Spacers over Massers–a spacing effect—is

the second key finding of this study. Both findings—the null effect of overlearning and the

superiority of spacing over massing—favor the shuffled format, which uses spaced prac-

tice, over the more commonly used standard format, which induces massing and over-

learning.
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Experiment 2

In the second experiment, students worked a set of practice problems that were either

blocked by problem type or mixed together. College students were taught how to find the

volume of the four obscure geometric solids shown in Fig. 3a and then completed one of

two randomly assigned practice schedules. Each group worked the same practice problems,

but the practice problems were either blocked (e.g., four problems for one solid, then four

problems for another solid) or systematically mixed. Both the Mixers and the Blockers

completed two practice sessions, separated by 1 week, and were tested 1 week after their

second practice session, as shown in Fig. 4a. As detailed in the Introduction, mixed

practice requires that students learn to pair a type of problem with its appropriate proce-

dure, and, for that reason, we suspected that the Mixers would outscore Blockers at test.

Method

Participants

Three sessions were completed by 18 undergraduates (13 women) at the University of

South Florida. An additional 15 students completed the first session but failed to attend

either the second or third session. None participated in Experiment 1. Although the sample

size was small, statistical power was not a concern because of effect sizes were large.

Task

The students learned to calculate the volume of four geometric solids. Formal definitions of

the four solids are given in the Appendix, but students instead saw the illustrations and

descriptions shown in Fig. 3a. The volume of each solid depends solely on its radius (r) and

height (h). In every problem presented during practice or test, the radius and height equaled

a positive integer of seven or less. Problems and solutions were presented in the format

shown in Fig. 3b. Of note, students were asked to write the appropriate formula in a

preprinted box and write the volume in a preprinted oval.

Base rate survey

To verify that the volume formulas were virtually unknown to the participant pool used in

Experiment 2, we tested a sample of 25 students (14 women) from the same pool, none of

whom participated in either experiment. Each student was given 8 min to solve the eight

test problems given in Experiment 2, and these included two problems for each of the four

solids. None of the students correctly answered any of the problems. As in Experiment 1,

concerns about pre-experimental knowledge are further tempered by random assignment

and the law of large numbers.

Procedure

The students attended three sessions spaced 1 week apart. At the beginning of the first

session, each student was randomly assigned to the group of Mixers or Blockers. For both

groups, the first and second sessions were practice sessions, and the third session included

the test.
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Each of the two practice sessions included four tutorials and 16 practice problems. The

Mixers read all four tutorials before beginning the practice problems, and the 16 practice

problems were randomly ordered with the constraint that each set of four practice problems

(e.g., 1-4, 5–8, etc.) included one problem for each of the four solids. For the Blockers,

each tutorial on a given solid was followed immediately by the four problems relating to

that solid (e.g., the wedge tutorial was followed by four wedge problems, the spherical

A

B

A wedge is the boldfaced portion of the tube.
Its bottom is a circle, and its top is a slanted oval.
Its volume equals

2

2hr

A spherical cone is the boldfaced part of the sphere.
Its bottom is at the center of the sphere.
The rim of the cone is on the surface of the sphere.
Its volume equals

3
2 2hr

Problem
Find the volume of a wedge with r = 2 and h = 3.
Write the formula in the box; write the answer in the oval.

Solution

2

2hr

= 

2

322

=     6 

A spheroid is similar to a sphere.
But its height has been squeezed or stretched.
Its volume equals

3
4 2hr

A half cone is the bottom half of a cone.
Both its top and bottom are circles.
Its volume equals

3

7 2hr

Fig. 3 Volume task. a The illustrations and descriptions are identical to those shown to the students.
Formal definitions of each shape are given in the Appendix. b A sample problem. This example
illustrates the format of the solutions presented during the tutorial and the feedback after each practice
problem
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cone tutorial was followed by four spherical cone problems, and so forth). Within each

condition, the order of the problems did not vary across students, and no problem appeared

in both practice sessions. Most importantly, both groups saw the same tutorials and the

same practice problems in each session.

Students were given 45 s to read each tutorial, which consisted of the illustration and

written description in Fig. 3a and one solved example like that shown in Fig. 3b. Students

were allotted 40 s for each practice problem, and each practice problem was followed

immediately by a 10-s visual presentation of the solution. Each practice problem and its

subsequent solution were presented in the format shown in Fig. 3b.

One week after the second session (and their last practice problem), students were

tested. Eight novel problems, with two problems for each solid, were presented simulta-

neously in a random order. All students saw the same problems in the same order. Students

were allotted 8 min and were required to sit for the entire time period. Feedback was not

provided.

Results and discussion

Inclusion criterion

Every student correctly answered at least one practice problem in each practice session.

Consequently, every student was included in all further analyses.

Practice performance

Practice session performance was impeded by mixture (Fig. 4b), as the Blockers’ average

of 89% (SE = 4%) statistically exceeded the Mixers’ average of 60% (SE = 7%), t
(16) = 3.14, p < 0.01,d = 1.06. This superiority of Blockers was due primarily to the

difference in their scores during the first session (87 vs. 43%), t(16) = 3.88, p < 0.01, d =

0.53. In the second practice session, the Blockers’ superiority was more moderate and not

statistically significant (91 vs. 78%), t(16) = 1.58, p > 0.05.

Test performance

By contrast, the mean test performance of Mixers (63%, SE = 12%) was far greater than

that of the Blockers (20%, SE = 9%), t(14) = 2.64, p < 0.05, d = 1.34, as shown in Fig. 4c.

Thus, mixed practice produced superior test performance and inferior practice performance

(compared to blocked practice), as evidenced by a statistically significant interaction be-

tween practice strategy (mixed vs. blocked) and experiment phase (practice vs. test), F (1,

16) = 35.08, p < 0.001.

In a secondary analysis of test performance, we tabulated the number of test problems

for which students provided the correct formula but not the correct answer. Across all

students and all test problems, this happened only twice: once for a Mixer and once for a

Blocker. Thus, if the correct formula was recalled, the correct answer was almost always

found. This means that Blockers (and Mixers) knew how to solve each kind of problem at

the time of test, and, consequently, their poor performance was due to their inability to

recall the correct formula for each problem. Thus, as fully detailed in the Introduction, it

appears that students received the necessary discrimination training only when practice

problems were mixed by type.
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Finally, although it might seem that the superior test scores of Mixers could be

attributed to the fact that the test problems were mixed rather than blocked, we believe this

is unlikely for two reasons. First, if it is assumed that the Blockers’ poor test performance

stemmed from their inability to pair each kind of problem with the appropriate formula, as

suggested by the analysis in the paragraph immediately above, the order of the test

problems is logically inconsequential. Second, because the test included only two problems

of each type, the difference between a blocked and mixed format would have been slight.

Summary

While blocked practice proved superior to mixed practice during the practice session,

subsequent test scores were much greater when practice was mixed rather than blocked.

The superior test performance after mixed practice is, in our view, attributed to the fact that

students in this condition were required to know not only how to solve each kind of

problem but also which procedure (i.e., formula) was appropriate for each kind of problem

A Practice Procedure

week week 3

Mixers    Set 1    Set 2  test
 interleaved     interleaved

Blockers  Set 1  Set 2     test
   grouped    grouped

C Test Performance

Mixers Blockers

A
cc

ur
ac

y

0%

100%

63%

    20%

B Practice Performance

Mixers Blockers

A
cc

ur
ac

y

0%

100%

    89%

60%

1 week 2

Fig. 4 Experiment 2 a Practice
procedure. b Practice session
performance. Error bars reflect
±1 SE. Data are averaged across
the two practice sessions. See
text for details about performance
on each specific practice session.
c Test performance. Error bars
reflect ±1 SE
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(i.e., solid). This possibility is also consistent with the finding that virtually every test error

was due to the selection of the wrong formula.

General discussion

Test performance in both experiments benefited from altering either the timing or the serial

order of practice problems. In Experiment 1, test performance increased sharply if a given

set of practice problems was spaced across two sessions separated by 1 week, as compared

to the massing of these problems within a single session. In addition, there was no dec-

rement in test performance when the number of massed practice problems was reduced by

half, which is to say that there was a null effect of the strategy known as overlearning. In

Experiment 2, test performance improved 250% when practice problems of different types

were mixed together and not blocked by type. In brief, while an increase in the number of

massed practice problems did not reliably affect test scores (Experiment 1), large gains in

test performance were achieved by the use of spacing or mixing, even though neither of

these strategies required additional practice problems.

The two experiments also demonstrated that a learning strategy which provides superior

test performance is not necessarily the one that optimizes practice performance. In

Experiment 1, the spacing of practice, which boosted test performance, had no effect on

practice performance. In Experiment 2, the mixture of problem types, which boosted test

performance, actually impeded practice performance. Bjork and his colleagues have

observed similar dissociations between practice and test performance, leading them to

describe these initially costly but ultimately beneficial strategies as desirable difficul-
ties(e.g., Bjork, 1994; Christina & Bjork, 1991; Schmidt & Bjork, 1992).

Caveats

Several limitations apply to the generality of these findings. First, our subjects were college

students, and it is possible that the effects observed here might be muted or even absent

with much younger students. Second, the experiments reported here relied on a test that

required students to solve problems exactly like those shown in practice, and it is not

known whether our findings would obtain with measures requiring transfer. Third, our

experiments were laboratory based, and future research will be needed to determine if the

findings will replicate in a classroom setting. Fourth, the tasks used in our experiments are

procedural rather than conceptual (e.g., Rittle-Johnson & Alibali, 1999; Rittle-Johnson,

Siegler, & Alibali, 2001), and it remains unknown whether the benefits of spaced and

mixed practice would hold for more abstract, conceptual tasks. In brief, our results leave

open the possibility that our findings may not generalize to different subjects, tasks, and

settings, yet, at the same time, we know of no reason why they would not.

Practical implications

The present results cast doubt on the utility of the standard practice format used in most

mathematics textbooks because this format is characterized by massed practice and

blocked practice—the very two strategies that proved here to be deficient long-term

learning strategies. Likewise, the present findings suggest that the shuffled format, with its
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reliance on spaced and mixed practice, deserves further consideration by researchers,

teachers, educators, and authors.

We should emphasize that the shuffled format can be adopted without any change in the

nature or the order of the lessons. It does mean, however, that, if a lesson is omitted, one

must be careful to also omit corresponding problems throughout the remainder of the

textbook. Fortunately, this task is made easy if the textbook includes an index listing every

practice problem and its corresponding lesson, allowing the instructor to easily avoid

assigning problems relating to omitted topics. Such an index also means that a student

can find the lesson corresponding to a problem that he or she cannot solve. In fact, the

lesson number for each problem could be provided immediately adjacent to each practice

problem.

Perhaps the most well known example of the shuffled format is the Saxon line of

mathematics textbooks (e.g., Saxon, 1997). In these textbooks, no more than two or three

problems within each practice set are drawn from the immediately preceding lesson, and

the remaining one or two dozen problems are drawn from many different lessons. We are

not aware of any published, controlled experiments comparing a Saxon and non-Saxon

textbook, but such an experiment may not be particularly informative because it would be

confounded by the numerous differences between any two such texts. That is, regardless of

the outcome of an experimental comparison of a shuffled textbook and a standard textbook,

any observed differences in, say, final exam performance might reflect differences in the

lessons rather than practice format.

Such confounds would be avoided, however, if two groups of students were presented

with the same lessons and different practice sets. For example, each group of students

could receive a packet that includes the lessons from a traditional textbook, and these

lessons would appear in the same order for both groups. Both groups would also see the

same practice problems, but the problems would be arranged in either a standard format

or shuffled format. By way of disclosure, neither author has an affiliation with a

publishing company or mathematics textbook, although the first author is a former

mathematics teacher who has taught with textbooks from many different publishers,

including Saxon.

Additional advantages of a shuffled format

There may be additional benefits of a shuffled format not addressed by Experiments 1 and

2. For example, when practice problems relating to a given topic are spaced across multiple

practice sets, a student who fails to understand a lesson (or fails to attend a lesson) will still

be able to solve most of the problems within the following practice set, whereas a massed

practice set ensures that this student will have little or no success. Likewise, if that student

achieves better understanding of the topic in a subsequent class meeting (perhaps by

observing other students solve the previously assigned practice problems in class), a

shuffled format provides opportunities to practice these new skills in the future.

Finally, the logistical demands and the financial costs of adopting a shuffled practice

format are relatively small. Instructors can incorporate a shuffled format regardless of

their adopted textbook by merely shuffling practice problems from multiple practice sets.

Ideally, though, the shuffled format would be incorporated by textbooks and instructional

software packages. Notably, the adoption of this new format could be accomplished with

little trouble or expense, as authors and publishers could merely rearrange the practice

problems in the next edition.
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Appendix

Permutations

If a sequence of items includes n items and k unique items, the number of permutations of

the sequence equals n!/(n1! n2! ... nk!), where ni equals the number of occurrences of item i.
Thus, for the sequence abbccc, the number of permutations equals 6!/(1! 2! 3!), or 60.

Wedge

A wedge is obtained by the truncation of a cylinder by two planes if exactly one of the

planes is perpendicular to the cylinder and if the linear intersection of the two planes

includes exactly one point on the cylindrical surface. If the latter constraint is relaxed so

that the linear intersection may intersect the cylindrical surface at either one or two points,

the solid is a cylindrical wedge. This is the shape shown in Fig. 3a. We chose the term

wedge for this specific case because we do not know of an accepted term. Its volume

equals r2hp/2, where r equals the radius of its circular base and h equals its maximum

height

Spherical cone

A spherical cone is obtained by removing a conical section of a sphere provided that the

vertex of the cone is at the sphere’s center and the base of the cone is on the sphere’s

surface, as shown in Fig. 3a. Its volume is given by 2r2hp/3, where r equals the radius of

the sphere and h equals the difference of the sphere’s radius and the cone’s height

Spheroid

A spheroid is obtained by the rotation of an ellipse about one of its axes. The spheroid in

Fig. 3a, for example, is rotated about its vertical axis. Its volume equals 4r2hp/3, where r
equals the ‘‘equatorial radius’’ and h equals the ‘‘polar radius.’’ The values of r and h also

equal one-half of the major and minor lengths of the rotated ellipse.

Half cone

A half cone is a cone truncated by a plane parallel to its base so that the truncation reduces

the cone’s height by half. Its volume equals 7r2hp/3, where r equals the radius of the upper

base and h equals the height of the truncated cone, as illustrated in Fig. 3a. The half cone is

a specific instance of a conical frustum, which has a height equal to any proportion of the

cone’s height. We chose the term ‘‘half cone’’ to describe a conical frustrum with height

equal to exactly half of the cone’s height.
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