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The gravitational field outside of a nonrotating black hole is described using the Schwarzschild 
metric. The geodesic equations of the Schwarzschild metric are derived and those describing null 
and circular timelike orbits are discussed. Some numerical solutions of the null geodesic 
equations are shown. These depict photon trajectories which circle the black hole one or two 
times and then terminate at their emission points. Thus a sequence of ring-shaped mirror images 
is produced. An equation which gives the angle between the photon’s trajectory and the radial 

direction at the emitter is derived and applied to the numerical solutions. These results serve to 
illustrate how an observer “passes through” his or her mirror image at r=3 MG/c’, as he or she 
moves toward a Schwarzschild black hole. 

I. INTRODUCTION 

Black holes and gravitational lensing are often described 
in introductory and popularized astronomy literature. 
However, these sources rarely mention that lensing due to 
black holes can be so severe as to send photons back to 
their source,’ thus producing a “gravitational mirror.’ 
This paper in part explains the gravitational mirror effect 
created by a nonrotating black hole, i.e., a Schwarzschild 
black hole. The paper in full is intended to complement 
papers by Schastok et a.” and Ohanian’ on black hole lens- 
ing which previously appeared in this journal. 

It is assumed the reader has completed only the first 2 
years of a typical undergraduate physics curriculum. Thus 
we begin in Secs. II and III with a brief introduction to 
black holes, gravitational lensing, general relativity (GR), 
the metric, and the geodesic. The reader already familiar 
with these topics can skip Secs. II and III without loss of 
continuity. 

Section IV contains an explanation of the Schwarzschild 
metric. Radial and temporal measurements made in the 
Schwarzschild gravitational field are discussed. The GR 
origins of the terms “event horizon,” “Schwarzschild ra- 
dius,” and “black hole” are given therein. 

The geodesic equations for the Schwarzschild metric are 
derived in Sec. V. These equations are then applied to the 
cases of circular timelike and null geodesics of the 
Schwarzschild field. Some numerical solutions of the null 
geodesic equations are shown and a qualitative description 

of the photon motion is given. 
Section VI begins with a derivation of the equation for 

the angle between a light ray (photon spatial trajectory) 
and the radial direction, as measured by an observer at rest 
with respect to the black hole. We apply this equation to 
the eight numerical solutions obtained at four spatial loca- 
tions. These results illustrate how an observer “passes 
through” his or her mirror image as he or she approaches 

the black hole. 
The paper concludes with an appendix outlining the nu- 

merical analysis employed herein. The method and choice 
of step size are described. 

II. BLACK HOLES AND GRAVITATIONAL 

LENSING 

The Newtonian version of a black hole was first intro- 

duced in the late 1700s and is not related to its relativistic 
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counterpart.’ The Newtonian black hole is a massive body 
with an escape velocity from its surface exceeding the 
speed of light. Since light cannot escape (to infinity) from 
its surface, the body is black when viewed from a large 
enough distance. 

The modern concept of a black hole is obtained from 
Einstein’s theory of general relativity. As with the New- 
tonian black hole, the GR black hole owes its name to the 

fact that it is a region of space from which not even light 
can escape. Because black holes are not directly observable, 
astronomers collect data which can only infer the existence 
of black holes. 

For example, recent discoveries suggest the presence of 
large black holes in some galactic nuclei.° Specifically as- 

tronomers have found a cosmic jet (a stream of ionized 

matter thousands of light years long emanating from the 
nucleus of a galaxy) associated with M87, a giant elliptical 
galaxy in the Virgo cluster. Observations of the nucleus of 
M87 also reveal a tremendously dense concentration of 
stars rotating about its center with large orbital speeds. 
Based on these observations, many astronomers believe an 

enormous black hole resides in M87’s nucleus. This black 

hole, perhaps five billion times more massive than the Sun, 

would form M87’s cosmic jet as it consumed stars.° Its 

exceptionally strong gravitational field would provide the 
centripetal acceleration needed to explain the high orbital 
speeds of the stars in M87’s nucleus. 

Astronomers have somewhat more compelling evidence 
that smaller black holes, of only a few solar masses, reside 
in our galaxy.’ These black hole candidates are x-ray 
sources in orbits about normal stars. The three most prom- 
ising candidates are Cygnus X-1, A0620-00, and V404 
Cygni. Their masses and sizes are inferred by their orbital 
characteristics. Given their masses and sizes, the objects 

must be black holes according to current theories of stellar 

evolution. Astronomers believe these black holes emit x- 

rays as they accrete material from their binary compan- 

ions. Black holes existing in relative isolation, which there- 

fore do not accrete matter, will be much more difficult to 

find. Some astronomers believe that gravitational lensing 

will produce evidence for the existence of these isolated 

black holes.® 

Simply put, gravitational lensing is the “bending” of 

light rays in a gravitational field. The “bent” light rays 

produce a distorted image of the emitter.” Astronomers 

believe they have observed gravitational lensing between 
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Fig. 1. An observer sees multiple images (here showing just two) of a 
distant object when light is “bent” around a black hole. [From Universe, 
by Wm. J. Kaufmann III. Copyright (c) 1985 by W. H. Freeman and 
Company. Reprinted by permission.] 

extragalactic objects,'° but they are not yet convinced that 
they have observed lensing by and between galactic ob- 
jects. 

Because gravitational lensing produces a distorted im- 
age, it may serve as a tool for locating isolated black holes. 
If Earth is closely aligned with a distant star and an inter- 
vening black hole, gravitational lensing will produce mul- 
tiple images of the distant star (Fig. 1). Thus Paczynski 
and Alcock are establishing searches which will utilize 
“close alignment lensing” to search for black holes and 
other dark bodies in our galaxy.” (An isolated black hole 
which is not “closely aligned” with Earth and a distant star 
will still produce multiple images of every source in the 
sky, but these images are probably too faint to be de- 
tected.!%) 

To understand how a black hole or any massive object 
lenses light, one must be familiar with GR. To understand 
GR, it helps to be familiar with the geometry of curved 
spaces. Therefore these concepts are introduced in the fol- 
lowing section. 

Ill. GENERAL RELATIVITY AND GEOMETRY 

Recall that in special relativity (SR) all inertial frames 
move at constant velocities relative to one another. This 
aspect of SR is generalized in GR so that it is possible to 
have inertial frames accelerating relative to one another. In 
order to have inertial frames accelerate relative to one an- 
other, spacetime must be curved. The world lines of iner- 
tial observers, those in free fall (or “free float’ as 
Wheeler'* describes it), are then “straight lines” or geode- 
sics of the curved spacetime. (This concept of a “geodesic” 
will be explained later in this section.) 

Spacetime becomes curved with the introduction of 
mass-energy. (SR relates mass and energy via E=mc’.) 
Einstein’s equations of GR relate the mass-energy- 
momentum content of spacetime to its resulting curvature. 
As described in Gravitation,'* there is an “action of geom- 
etry on matter and the reaction of matter on geometry.” 
Therefore GR is a theory of gravity. A key to understand- 
ing the structure of curved spacetime is a tensor called the 
metric. One solves Einstein’s equations of GR to obtain the 
metric, and it serves as a tool for understanding the grav- 
itational field. 

A simple understanding of the metric is obtained from 
its role as ds’, the infinitesimal distance Squared in the 
spacetime. According to SR, the distance along a world 
line is proportional to the proper time elapsed for an ob- 
server moving on that world line. Thus 

ds’ = —cd?’, (1) 
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where c is the speed of light in vacuum and 7 is the proper 
time measured by the world line traveler. (The minus sign 
arises because we are in spacetime, rather than just space, 
and the inner product of a timelike vector with itself is 
negative.) For photons, which travel on null world lines, 

ds“ =0. 
As an example in space, consider ds” in #”. Using Car- 

tesian coordinates the infinitesimal distance squared (or 
simply, “the metric”) is 

ds? =dx? 4 dy’. (2) 
Denoting the coordinates x as x' and y as x” (not to be 
confused with “x squared”), Eq. (2) can be written 

2 2 

ds?=(dx!)?+ (dxy?= LY gydxi dx’, (3) 
i=1 j=l 

where 

71 0 
«v=(, i): (4) 

or 811=1, 812=0, 8)=0, and &2=1. 3 . 
If one is using polar coordinates in #*, the metric is 

ds’ =dP+7rdh. (5) 
Denoting the coordinates 7 as x! and @ as x’, the metric’s 
matrix representation is 

1 0 
ei=(, 2) (6) 

or 81,=1, 81.=0, g2;=0, and &n=P. 
Metrics in spacetimes (rather than just space) are usu- 

ally written with Greek indices (rather than Latin) and 
use x° as the time coordinate. Also, 

3 3 

dv= XY D sapdx* dx’, (7) 
a=0 Bs=0 

is usually shortened by omitting the summation signs—the 
repeated upper and lower indices implying a sum over all 
spacetime dimensions. This is called the Einstein summa- 
tion convention. Both of these conventions will be used in 
this paper which continues now with an explanation of the 
geodesic. 

A geodesic is a curve of extremum length between two 
spacetime points (label them S and T). Since the notion of 
length is described infinitesimally by the metric, we have 
naturally 

= [0 ecient 
, S 

=f dx® d: d 8 
= |, \~8:8 Gp ap (8) 

as the length of a curve between points S and T as de- 
scribed by the coordinate functions x“(p). [The -minus sign 
is introduced in spacetime since, as shown in Eq. (1), a 
timelike ds? is negative.] In calculus when you want to find 
the extremum of a function f(x), you find those values of 
x where df/dx=0. An analogous situation holds for find- 
ing geodesics of the spacetime. One finds the curve between 
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Fig. 2. The segments of the equator connecting points S and T of a sphere 
are geodesics. 

points S and T specified by {x’(p)}, such that 5L=0 for 
arbitrary 5x“(p). Then curves nearby this geodesic, given 
by {x“(p)+65x"(p)}, are slightly longer or shorter curves 
than the geodesic. 

For example, consider the points S and T on the equator 
of a sphere as shown in Fig. 2. The curve of absolute min- 
imum length is the short segment of the equator between 
points S and T. Therefore this piece of the equator is a 
geodesic between S and T. Now consider the long segment 
of the equator between S and T. The length of this curve is 
a relative maximum, since nearby curves are a little 

shorter. Therefore, it too is a geodesic between S and T. 
Demanding that 5L=0 for all 5x“(p) gives!® 

dx? re dx® dxf 0 9 

where 

(yt) a0) wo nob 
Pop 2 \ ax * ax axt 

is called the Christoffel symbol of the second kind. (Here- 

after, it is referred to as simply the “Christoffel symbol.” ) 

The g”” are the elements of the metric’s inverse matrix. For 
example, the g’” for Eq. (6) would be 

ii 0 
e-(, ve): 

Notice there are N, second order differential equations to 

be solved for the N coordinate functions x*(p) in an 

N-dimensional spacetime. 
For example, consider again the space F* with Carte- 

sian coordinates. All the Christoffel symbols are zero and 

the two differential equations to be solved are 

a’x 

ap 

(11) 

(12) 
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dp =0. (13) 

The x"(p) which satisfy these differential equations are 
simply 

x(p) =cptcy 

and 

(14) 

Y(p) =ce—pt es, (15) 

where the c; are arbitrary constants. Eliminating the pa- 
rameter p and combining the arbitrary constants results in 
the more familiar form, 

(x) =mx +b, (16) 

where m=c;/c, and b= (c,c4—¢2¢3)/c}. 
Using polar coordinates in #? yields 

1 
M=Tn=; (17) 

and 

l,=-1 (18) 

for the nonzero Christoffel symbols. The geodesic equa- 

tions are then 

ar d6\ (d6 
apt" (=) (=) =0 (19) 

and 

@@ 2/d0\ (dr 

wr (ae) (w)=° 0) 
One solution of these equations is 

r=cpte, (21) 
and 

6=c;, (22) 

where the c; are arbitrary constants. This is the family of 

straight lines through the origin, a subset of Eq. (16). Of 
course the set of all solutions to Eqs. (19) and (20) must 

be equal to Eq. (16), i-e., straight lines written in polar 

coordinates. 

This section has offered only a brief introduction to GR, 

the metric, and the geodesic. However, it does provide a 

sufficient basis for understanding the calculations pre- 

sented in Secs. IV and V. 

IV. THE SCHWARZSCHILD GEOMETRY 

Solving Einstein’s equations of GR for the metric out- 

side a spherically symmetric, static (does not change with 

time) body of total mass-energy M@ yields'® 

2GM 2GM\—! 
ata —e(1—“5e Jar+ (1-3) dr+rde 

+P (sin? 0)dg”. (23) 

The geometry (or gravitational field) described by this 

metric is called the Schwarzschild geometry after the man 

who derived the solution in 1916, Karl Schwarzschild. In 

this metric, G is Newton’s gravitational constant, 0 and g 
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are the polar and azimuthal coordinates, t is the coordinate 
time, and r is the radial coordinate. Because the body pro- 
ducing this geometry is spherically symmetric, the radial 
component of g,g is the only spatial component differing 
from its Euclidean counterpart. Because the body produc- 
ing this geometry is static, the g,,, are not functions of time. 

The radial coordinate of this metric is defined via area 
measurements around the body. Given the area A of a 

hypothetical spherical surface (all points of which lie equal 
distance from the body), the radial coordinate of the points 

on this surface is defined as 

r= \A/4r. (24) 

Therefore, the radial coordinate of a hypothetical circle on 
this sphere in the 0=7/2 plane is 

r=C/2n, (25) 

where C is the circumference of the circle. Of course this is 

also the result in #7. However in #7 the radial distance 
between concentric circles of radii R, and R, is 

Ry 
As= dr=R,—R,, (26) 

Ry 

whereas in the Schwarzschild geometry the radial distance 
between such circles is 

As Ry dr 

~ R | 2M 
_— 

r 

Rit 2M Rall 2M 

=Ra YI Ye 
\R.+ \R,—-2 M 

+2 wom REA) 
(Here and throughout the remainder of the paper M de- 
notes GM/c*.) The result of Eq. (27) is larger than the 
result of Eq. (26). Therefore, the radial distance between 
concentric circles in the Schwarzschild geometry is greater 
than the radial distance between circles of like circumfer- 
ences in Euclidean geometry (see Fig. 3). 

For example, consider the two concentric circles of radii 
R,=2 m and R,=1 m in a spacetime with negligible mass- 
energy content, i.e., a flat spacetime. The circumferences of 

(27) 

these two circles are 477 m and 27 m, respectively, and the’ 
radial distance between the circles is simply 2 m—1 m=1 
m. Now at the coordinate origin place a small (with re- 

spect to volume) mass My equal to that of the Earth’s 
(5.98 x 10" kg). The “equatorial” circle about this mass 
with circumference 47 m has radial coordinate R,=2 m by 
definition. Likewise the “equatorial” circle about this mass 
with circumference 27 m has radial coordinate R,;=1 m. 
Equation (27) then gives the radial distance between these 
circles as 1.0031 m. 

Replace M;, with an object of one solar mass (Mg,,,) and 
Eq. (27) yields imaginary results for R;<3 km. In fact at 
r=2GMgyp/c’, the Schwarzschild metric is singular. In 
general the singularity arising at r=2 M is denoted R, and 
called the Schwarzschild radius. The other value at which 
the Schwarzschild metric is singular is r=0. The Rg sin- 
gularity is a coordinate singularity, i.e., it disappears under 
an appropriate coordinate transformation.'? No signals 
from spacetime events with r<R, can reach observers at 
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Crstance Between Concentric Circles 
of Radiir = 2.0t andr= 10.5 

(rin umts of GM/c?) 

re 105 

   
     

(-—- As 

Schwarzschild 

   r=2.01 r= 105 

(~--~ As -- --) 
Euclidagn       

Fig. 3. The radial distances between two concentric circles in the 
Schwarzschild metric and the Euclidean metric are contrasted. Notice 
that the radial distance between these circles is greater in the Schwarzs- 
child metric (distance along the curve labeled “As Schwarzschild”), even 
though the circumference of the circles are the same in both geometries. 

r>Rgs. Thus the name event horizon is given to the 
Schwarzschild radius. The Mg,, black hole has a 
Schwarzschild radius of 3 km. Since nothing (not even 
light) can escape this region, it is called a Schwarzschild 

black hole. 
(Herein lies the difference alluded to in Sec. II between 

the Newtonian black hole and the relativistic black hole. 
According to Newtonian physics if a body has a density 
such that the escape velocity from its surface is c, light is 
not confined to the surface. Rather the velocity of the emit- 
ted photons goes to zero as the light goes to infinity. There- 
fore this body does not appear black, except to those ob- 
servers at infinity. The relativistic black hole on the other 
hand, appears black to observers at all r> Rs.) 

If an object is compressed into its r< Rg region, then no 
known force can stop it from self-gravitating to infinite 
density at r=0. Therefore the r=0 singularity is a physical 
singularity, i.e., a place where the known laws of physics 
can no longer describe nature. 

Again the Schwarzschild metric is only valid outside the 
body, so these singular radii are only relevant when the 
body in question is a black hole. The following calculations 
deal predominately with the space outside of black holes, 
so it should be noted that Eq. (27) can be applied at R, 
=Rg. Thus the definition of the radial coordinate can be 
modified to read, “...(all points which lie equal distance 
from the event horizon)...” for use about a black hole. 

Having introduced the spatial curvature, we turn now to 
the temporal curvature. Coordinate time of the Schwarzs- 
child geometry is the proper time measured by observers at 
rest (dr=d6=dp=0) at r= oo. The metric relates proper 
time elapsed for observers at rest at finite r to the passage 
of coordinate time via 

2M 
de = —Cdr=—? (1) dr (28) 

so that 
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| 2M 
Ar= 1—-—— At. (29) 

Thus an observer near the black hole ages more slowly 
than observers farther from the black hole. 

This is a small effect about objects with masses and vol- 
umes comparable to Earth’s. An expansion of 

V¥l—2 M/r in Eq. (29) to first order in 2 M/r yields 

Ar=(1—M/r) At. Using the mass and radius of the Earth, 
you find that (1—A7z/At) is a mere 7x 107° 

In closing this section, it should be noted that the 
Schwarzschild metric reduces to the flat spacetime metric 
in spherical coordinates, as r goes to infinity. That is to say, 
the gravitational field is negligible far from the source. The 
following equations explain the geodesic motion of photons 
(or any massless particle), as well as circular time-like 
geodesic motion, throughout the 7> Rg region. 

V. GEODESICS OF THE SCHWARZSCHILD 
GEOMETRY 

The calculations of this section deal exclusively with mo- 

tion in the 9=7/2 plane without loss of generality. This is 
because spherical symmetry requires planar geodesics. The 
plane of any given geodesic can then, via a judicious choice 
of coordinate assignment, be described by 90=7/2. Thus 
we are concerned with motion for which 

-1 
ata—e (1) ae+(1-*) a+ragt 

(30) 
Assign x°=t, x'=r, and v=o and the nonzero Christoffel 

symbols are 

M cM 2M 
Mh=To=Tn=——z yr’ Fo= S (1- —} , 

p(1-) 
(31) 

1 2M 1 
[y=-? (1-—} , 1% mr=T p=. 

Equation (9) then gives the three geodesic equations of the 
Schwarzschild geometry as 

at 7° dt\ (dr 0 

dp + 7h 10 (5) (5) 
ar dt\? , (ar 2 , (4 

dp apt Te (3) Pu () +P (2) =% 
Pp r dg\ {dr 

ap tra (=) (z)- 
That these admit circular, timelike geodesic orbits about 
the black hole can be shown as follows. 

For timelike (p=7) curves with r=rp (a constant), Eqs. 

(32)-(34) give 

(32) 

(33) 

(34) 

at 
F270 (35) 

dt dp 
Mo (5 \4 +1, (#) =0, (36) 
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&p 
G0: (37) 

The solutions of Eqs. (35) and (37) are simply 

t=¢,T+c) (38) 

and 

p=ertcey, (39) 

where the c; are arbitrary constants. Equation (36) gives 
(for 79> Rs) 

d 
oe +¢ ¥M/(7)° 

(which is equivalent to the Newtonian result when ts7, 

i.e., the gravitational field is weak). Thus there are circular 
timelike geodesics in the Schwarzschild geometry given by 
r=", P=C3T+¢4, and t=c,7+c, where the c; are arbi- 

trary constants except that ¢;/c; = /M/(r) 3. 
Proper time elapsed versus coordinate time elapsed for 

circular geodesic travelers is then given by Eqs. (8) and 

(30) as 

es 1 “hap? 

(40) 

—*) a? )*d¢’. (41) 

Using Eq. (40) and the ) rule for dt yields 

7) _¢M 3M 
Ar=- fel dt= |1——— At. 

Yo Yo 

(42) 

Notice Ar=0 for r9>=3 M, ie., 79=3 M is a null circular 
geodesic. Thus photons have a circular orbit about the 
black hole at ro=3 M. This orbit is called the photon circle 
or photon sphere.” The following investigation of null geo- 
desics will also obtain this result. 

For null geodesics (ds*=0), Eq. (30) gives 

-1 
2 (1--) a?=(1-) d?-+ dg? 

  

  

(43) 

This can be rewritten using two conserved quantities ob- 
tained via the geodesic equations. These conserved quanti- 
ties exist for geodesic motion, because the spacetime has 
two symmetries, i.e., it’s spherically symmetric and static. 

Equation (34) can be rewritten as 

dp d (? 4 |ép=0, (44) 

thus 

r 49 _ sonstant:= L. (45) 
dp 

In the case of timelike orbits (p=r), L£ is the angular 

momentum per unit mass.”! Along null geodesics, we may 

assume that L is related to the angular momentum of the 

photon.” 
Another conserved quantity is obtained from Eq. (32), 

which can be rewritten as 
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Effective Potential for Photons 
  

  

      

0.02 

“O 

~ 
= 
C8 
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0.00 +—+—-+—_ +++ + -~>-+_ +_+--+_ + —_+_ + 
012 3 4 5 6 7 8 9 10 11 12 13 14 

r in units of GM/c? 

Fig. 4. A photon’s radial motion can be understood qualitatively using 

this “effective potential.” 

2 M\ (dt a|(1-—) (5)| |a=o, (46) 
and therefore 

2 M\ /dt 
(1-] (5) =constant:=E. (47) 

r dp 

In the case of timelike orbits, Ec’ can be interpreted as the 
total energy (including gravitational potential energy) per 
unit mass of the geodesic traveler. Along null geodesics, we 
may assume that £ is related to the total energy of the 
photon.” 

Using these two conserved quantities, Eq. (43) can be 
rewritten as 

2e-(B)5(28) 
This equation has the form of a unit-mass particle of total 

(48) 

energy CE/2 moving in a one-dimensional “effective po- 
tential” given by 

V L 1 2M (49) 
(N= ( op ye 

Figure 4 displays this potential. To find the maximum of 
V(r) one must solve 

dV = ( *m) LM 
+—4-=0. (50) 

dr Pp 

The solution is r,,,,=3 M, independent of LZ. This is the 
circular orbit found previously for photons. Because this 
orbit is a maximum of V(r), it is an unstable orbit, i-e., a 
slight deviation from this orbit sends the photon into the 
black hole or to infinity. Further study of V(r) allows for 
some qualitative understanding of photon motion in the 
Schwarzschild geometry. 

First, consider photons emitted from r> 3 M. If emitted 
with dr/dp > 0, i.e., away from the black hole, the photon 
simply proceeds to infinity. If dr/dp <0, there are three 
possible results. If E is such that c’E’/2=V(r=r,,,,), then 
the photon ends up in the unstable circular orbit at -=3 M. 
(Assign £, to this value of £.) If E> E, then dr/dp never 

r 
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r=)10.5         
Fig. 5. Numerical solutions showing “boomerang photons” emitted from 
inside and outside the photon circle about a black hole. The event horizon 
is shown with the dashed curve. The values of 7) are given in units of 
GM/c*. The emission angles are 10.53° at 7y=2.01, 82.75° at m=2.8, 
66.83° at r>=4.0, and 26.74 at r9= 10.5. 

increases to zero and the photon proceeds into the black 
hole. If E<£,, then the photon reaches a minimum value 
of r(7,,)>3 M where according to Eq. (48), dr/dp=0. 
Thereafter dr/dp is greater than zero and the photon pro- 
ceeds to infinity. In this case, it is possible that the photon 
returns to its emitter (Fig. 5). This will be discussed in Sec. 
VI. 

Consider now photons emitted from r<3 M. If emitted 
with dr/dp <0, i.e., toward the black hole, the photon sim- 
ply proceeds into the black hole. If dr/dp>O, there are 
three possible results. If E=Z,, then the photon ends up in 
the circular orbit at r=3 M. If E>£,, then dr/dp never 
decreases to zero and the photon proceeds to infinity. If 
E<E,, the photon reaches a maximum value of r(7,,) <3 
M where according to Eq. (48), dr/dp=0. Thereafter dr/ 
dp is less than zero and the photon proceeds into the black 
hole. Again in this case, the photon may return to its emit- 
ter (Fig. 5). (See also the discussion given in Ref. 24.) 

VI. BOOMERANG EMISSION 

Among the aforementioned scenarios, consider those 
cases where dr/dp changes sign and the photon returns to 
its emitter. As r,, approaches 3 M, the photon undergoes a 
larger angular displacement before dr/dp changes sign. 
Thus the photon may circumnavigate the black hole one 
(Fig. 5), two (Figs. 6-9), or more times before returning 
to its emitter. 

The angle of photon emission with respect to the radial 
direction (5) determines 7,,. For the emitter there is rota- 
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Fig. 6. The numerical solution of a “boomerang photon” emitted from 
very near (r9==2.01 GM/c’) the event horizon (dashed curve) of a black 

hole. The emission angle (10.50627°) is such that the photon made two 

orbits of the black hole before returning to its emitter. The border is 

tangent to the photon circle. 

tional symmetry about the radial direction and therefore 
the angle of emission is also the angle of reception. This 
angle can be obtained as follows. 

Equation (43) can be rewritten to give 

2 M\~! dr dq’ 
e=(1- +r . 

r (1-7 Mae & *) a 
r r 

(51) 
However, Eq. (28) gives (1—2 M/r)dt?=d?’ for the ob- 

server at rest at r. Thus we have 

  

  

  

"0004 e000     

  

  

Fig. 7. The numerical solution of a “boomerang photon” emitted from a 

position near and inside (7=2.8 GM/c*) the photon circle of a black 

hole (event horizon shown with dashed curve). The emission angle 

(82.72519°) is such that the photon made two orbits of the black hole 

before returning to its emitter. The border is tangent to the photon circle. 
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Fig. 8. The numerical solution of a “boomerang photon” emitted from a 
position near and outside (7p=4.0 GM/c’) the photon circle of a black 
hole (event horizon shown with dashed curve). The emission angle 

(66.71648°) is such that the photon made two orbits of the black hole 
before returning to its emitter. 

2 M\~! /dry? dp\? 
2 [4 _ _ — ona) (Sor). 

for the square of the photon’s speed as measured by an 
observer at rest at 7 (here assumed to be the emitter). The 
terms on the right-hand side of Eq. (52) can be identified 
as the radial and angular components of c’. Therefore the 
emitter at 7) measures an angle between the photon’s tra- 
jectory and the radial direction of 

5 , 2M dg 
= arctan Th Yo ar} 

(52) 

(53) 

  

  

    
\ 

L Vr = 10.5   
  

Fig. 9. The numerical solution of a “boomerang” photon emitted from a 

position outside (7)>= 10.5 GM/c*) the photon circle of a black hole 

(event horizon shown with dashed curve). The emission angle 

(26.44011°) is such that the photon made two orbits of the black hole 

before returning to its emitter. 
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(The + signs coming from square roots are omitted in all 
arctan functions with the understanding that we are con- 
cerned only with photons emitted toward r=3 M.) Equa- 
tions (45) and (48) can be combined to give 

dp ro 2M\~! 
ar * (vn BIG) 

where b= L/(cE) is called the apparent impact parame- 
ter. Equations (53) and (54) then give 

(54) 

2 1/2 
" 

5=arctan (3) -1] ; 
ab 

where a = j1—2 M/7p. 

If b = 27M, then E=E, according to Eq. (48) and 
the photon is emitted so as to be captured in the photon 
circle. This critical angle is given by Eq. (55) as 

To 2 1 

(=a x) 

For 6<65, the photon is captured by the black hole 
(79> 3 m) or escapes to infinity (7)<3 m). Therefore we 
are concerned only with those emissions for which 5 > 6,. 

As 6 goes to 6,, 7,, goes to 3 M. As stated previously, as 
7m goes to 3 M the photon makes more orbits around the 
black hole before returning to its emitter. Thus the “boo- 
merang photon” which makes one orbit around the black 
hole is emitted at larger 5 (5,) than the “boomerang pho- 
ton” which makes two orbits (emitted at 5,), and so on. 
The 6; must therefore satisfy 5,<5;<5,. At ro>=3 M, 5, 
=6,=90° and so all the 6,=90°. At infinite 7p the 5; cor- 
responding to any 5, is finite,?° so Eqs. (55) and (56) give 
5,=6;=0°. At r=2 M all images are seen’’ at =0°, thus 
6,=5,=0°. Using these results, we now construct the an- 
gular distribution of the mirror images seen by an observer 
moving (slowly) from r9= co to ry=2 M. 

Consider the observer at 7) which emits (or reflects) 
light uniformly in all directions. This observer will see 
rings of “boomerang photons” at angles 6,. The rings will 
be distributed between 5. and 5,, and the set of rings will 
have some angular extent about the radial direction. The 
distribution of the rings within the set, and the angular 
extent of the set will change as the observer changes his or 
her radial location. 

As the observer moves from infinity, the set is seen in the 
direction of the black hole and its angular extent increases 
from zero. The distribution of the rings in the set also 
increases, so they appear to “fan out” from a point in the 
direction of the black hole. In moving toward rp>=3 M, the 
rings eventually stop spreading out and begin to converge. 
Meanwhile, the angular extent of the set is increasing to 
90°. When the observer reaches the photon circle, all the 
images overlap at 90°. Thus the observer has “moved in- 
side” his or her circular mirror image. 

In continuing toward the black hole, the images appear 
in the direction opposite the black hole. That is, the ob- 
server has “passed through” his or her mirror image. The 
rings, still sandwiched between 5, and 5,, again “fan out” 
as the angular extent of the set decreases from 90°. Because 
the set is shrinking, the rings must eventually stop spread- 
ing out and begin to converge. As the observer approaches 
the event horizon, the set shrinks to a point seen in the 
direction opposite the black hole. 

(55) 

-1/2 

6,=arctan (56) 

    

455 Am. J. Phys., Vol. 61, No. 5, May 1993 

Table I. Numerical results. 
  

  

  

1/M 6, 5, . 6, b,/M b,/M 

2.01 10.53° 10.50627° 10.50623° 5.207 5.196172 

2.80 82.75° 82.72519° 82.72514 5.196 5.196153 

4.00 66.83° 66.71648° 66.71627° 5.200 5.196161 

10.5 26.74 26.44011° 26.43956° 5.251 5.196253 
  

  

Equations (55) and (56) have been applied to eight 

numerical solutions of photon trajectories which terminate 
at their emission points (Figs. 5-9). These results are given 
in Table I. 

In closing this section, we point out an interesting fea- 
ture of the numerical results. If you use a protractor to 
measure 6; at 7>=2.01 M in Fig. 5 or 6, you obtain 6,=75°. 
Equation (55) gives 6; 11° (Table I). This difference is 
due to the projection of the light ray onto the Euclidean 
plane. Had the light ray been graphed on the “funnel- 
shaped” surface shown in Fig. 3, 5; would have an appar- 
ent value of about 11°. 

APPENDIX 

The numerical results were obtained using the quartic 
Runge-Kutta method.”* The differential equation solved 
was 

dr P42M 
dp *"\e7°t , 

[The sign was reversed when the photon reached its turn- 
ing point, c’E’=2V(r), as explained in Sec. V.] The inputs 
for a run were then 5, 7p, N (the number of steps), and w 
(the step size in g). In practice, the total angular displace- 
ment and N were specified and these determined w. The 
input of 5 and 79 determined b via Eq. (55). A “good” 
value of w for each value of 7) was chosen with a simple 
test. 

The test was based on the properties of the photon circle. 
A “good” value of w at each 79 was determined to be the 
maximum value of w (specifying N to the nearest 100,000) 
for which a photon emitted at 6, would orbit the black hole 
ten times without spiraling out of the photon circle. The 
photon’s radial coordinate was output after the tenth orbit, 

so as to obtain an estimate of numerical error. These re- 
sults are given in Table II. 

Last, the number of significant figures of the 5 presented 
in Table I should be addressed. At each 7p, the number of 
decimal places in 5 was increased in successive attempts to 
get the photon to return to 79 (label this return value rf). 
This process was terminated when variations of the small- 

est decimal place in 5 did not produce consistent variations 
in Fr if 

(37) 

Table II. Step size test results (w=27/N). 
  

  

  

%/M N rafter Ap=207 

2.01 800,000 2.999999999087 
2.80 300,000 2.999999999103 
4.00 600,000 3.000000000902 

10.5 600,000 3.000000000903 
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With ry>3 M for example, it was demanded that an 
increment (of 1) in the least significant figure of 5 preduce 
an increase in ry. Likewise a decrement (of 1) must pro- 
duce a decrease in ry At each 7, decimal places were 
added to 6 until a least significant figure was found using 
the prescription just described, or until we had five more 
significant figures than were needed for comparison with 
6,. In rounding the values of 6 for presentation in Table I, 
at least three significant figures were omitted in all cases. 
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